Cloning and Functional Characterization of the \textit{Fatty Acid Elongase 1} (\textit{Fae1}) Gene from High Erucic \textit{Crambe Abyssinica} Cv. Prophet

Elzbieta Mietkiewska1,2,3, Jennifer M. Brost2, E. Michael Giblin2, David C. Taylor2

1University of Saskatchewan, Department of Plant Sciences, 51 Campus Drive, Saskatoon, Saskatchewan, S7N 5A8, Canada

2National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada

3Plant Breeding and Acclimatization Institute, Mlochow Research Center, 05-831 Mlochow, Poland

The strategic goal of our research is to modify high erucic acid rapeseed (HEAR) germplasm to increase the content of very long chain fatty acids (VLCFAs, particulary erucic 22:1c13) in the seed oil for industrial applications. The 3-ketoacyl-CoA synthase (\textit{Fatty Acid Elongase - FAE}) catalyzing the condensation reaction plays a key role in determining the chain length of fatty acid products found in seed oils and is one of the rate-limiting enzymes for VLCFA production in developing seeds. Looking for more efficient fatty acid elongase genes, we selected \textit{Crambe abyssinica} as a source based on the fact that this plant is capable of producing significant amounts of erucic acid in the seeds (60% of total fatty acids). Using a PCR based approach, a cDNA of a putative embryo \textit{FAE} was obtained showing high homology to known plant fatty acid elongases. To study the function of the protein encoded by the \textit{Crambe FAE}, the coding region was linked to the \textit{GAL1}-inducible promoter in the yeast expression vector pYES2.1/V5-HisTOPO and to the strong seed-specific napin promoter and subsequently transformed into \textit{Saccharomyces cerevisiae} and \textit{Arabidopsis thaliana} plants, respectively. Results from these heterologous expression experiments with the \textit{Crambe FAE} will be presented.